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15. QUARK MODEL

Revised August 2015 by C. Amsler (University of Bern), T. DeGrand (University of
Colorado, Boulder), and B. Krusche (University of Basel).

15.1. Quantum numbers of the quarks

Quantum chromodynamics (QCD) is the theory of the strong interactions. QCD is a
quantum field theory and its constituents are a set of fermions, the quarks, and gauge
bosons, the gluons. Strongly interacting particles, the hadrons, are bound states of quark
and gluon fields. As gluons carry no intrinsic quantum numbers beyond color charge,
and because color is believed to be permanently confined, most of the quantum numbers
of strongly interacting particles are given by the quantum numbers of their constituent
quarks and antiquarks. The description of hadronic properties which strongly emphasizes
the role of the minimum-quark-content part of the wave function of a hadron is generically
called the quark model. It exists on many levels: from the simple, almost dynamics-free
picture of strongly interacting particles as bound states of quarks and antiquarks, to more
detailed descriptions of dynamics, either through models or directly from QCD itself.
The different sections of this review survey the many approaches to the spectroscopy of
strongly interacting particles which fall under the umbrella of the quark model.

Table 15.1: Additive quantum numbers of the quarks.

d u s c b t

Q – electric charge − 1

3
+ 2

3
− 1

3
+ 2

3
− 1

3
+ 2

3

I – isospin 1

2

1

2
0 0 0 0

Iz – isospin z-component − 1

2
+ 1

2
0 0 0 0

S – strangeness 0 0 −1 0 0 0

C – charm 0 0 0 +1 0 0

B – bottomness 0 0 0 0 −1 0

T – topness 0 0 0 0 0 +1

Quarks are strongly interacting fermions with spin 1/2 and, by convention, positive
parity. Antiquarks have negative parity. Quarks have the additive baryon number 1/3,
antiquarks -1/3. Table 15.1 gives the other additive quantum numbers (flavors) for the
three generations of quarks. They are related to the charge Q (in units of the elementary
charge e) through the generalized Gell-Mann-Nishijima formula

Q = Iz +
B + S + C + B + T

2
, (15.1)
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2 15. Quark model

where B is the baryon number. The convention is that the flavor of a quark (Iz, S, C,
B, or T) has the same sign as its charge Q. With this convention, any flavor carried by
a charged meson has the same sign as its charge, e.g., the strangeness of the K+ is +1,
the bottomness of the B+ is +1, and the charm and strangeness of the D−

s are each −1.
Antiquarks have the opposite flavor signs. The hypercharge is defined as

Y = B + S − C − B + T

3
.

Thus Y is equal to 1

3
for the u and d quarks, – 2

3
for the s quark, and 0 for all other

quarks.

15.2. Mesons

Mesons have baryon number B = 0. In the quark model, they are qq ′ bound states
of quarks q and antiquarks q ′ (the flavors of q and q′ may be different). If the orbital
angular momentum of the qq ′ state is ℓ, then the parity P is (−1)ℓ+1. The meson spin
J is given by the usual relation |ℓ − s| ≤ J ≤ |ℓ + s|, where s is 0 (antiparallel quark
spins) or 1 (parallel quark spins). The charge conjugation, or C-parity C = (−1)ℓ+s, is
defined only for the qq̄ states made of quarks and their own antiquarks. The C-parity can
be generalized to the G-parity G = (−1)I+ℓ+s for mesons made of quarks and their own
antiquarks (isospin Iz = 0), and for the charged ud̄ and dū states (isospin I = 1).

The mesons are classified in JPC multiplets. The ℓ = 0 states are the pseudoscalars
(0−+) and the vectors (1−−). The orbital excitations ℓ = 1 are the scalars (0++), the
axial vectors (1++) and (1+−), and the tensors (2++). Assignments for many of the
known mesons are given in Tables 15.2 and 15.3. Radial excitations are denoted by the
principal quantum number n. The very short lifetime of the t quark makes it likely that
bound-state hadrons containing t quarks and/or antiquarks do not exist.

States in the natural spin-parity series P = (−1)J must, according to the above, have
s = 1 and hence, CP = +1. Thus, mesons with natural spin-parity and CP = −1 (0+−,
1−+, 2+−, 3−+, etc.) are forbidden in the qq̄ ′ model. The JPC = 0−− state is forbidden
as well. Mesons with such exotic quantum numbers may exist, but would lie outside the
qq̄ ′ model (see section below on exotic mesons).

Following SU(3), the nine possible qq̄ ′ combinations containing the light u, d, and s
quarks are grouped into an octet and a singlet of light quark mesons:

3⊗ 3 = 8⊕ 1 . (15.2)

A fourth quark such as charm c can be included by extending SU(3) to SU(4). However,
SU(4) is badly broken owing to the much heavier c quark. Nevertheless, in an SU(4)
classification, the sixteen mesons are grouped into a 15-plet and a singlet:

4 ⊗ 4 = 15 ⊕ 1 . (15.3)
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15. Quark model 3

Table 15.2: Suggested qq quark-model assignments for some of the observed light mesons. Mesons in bold face are included in the
Meson Summary Table. The wave functions f and f ′ are given in the text. The singlet-octet mixing angles from the quadratic and linear
mass formulae are also given for the well established nonets. The classification of the 0++ mesons is tentative: the light scalars a0(980),
f0(980), f0(500) and K∗

0 (800) are often considered to be meson-meson resonances or four-quark states, and are omitted from the table. The
isoscalar 0++ mesons are expected to mix. In particular, the f0(1710) mixes with the f0(1500) and the f0(1370). The a0(1450) is not firmly
established. See the “Note on Non-qq̄ mesons” and the “Note on Scalar Mesons” in the Meson Listings for details and alternative schemes.
In the 1++ nonet the isoscalar slot is disputed by the f1(1510). The isoscalar assignments in the 21S0 (0++) nonet are also tentative. See
the “Note on The Pseudoscalar and Pseudovector Mesons in the 1400 MeV Region” in the Meson Listings.

n 2s+1ℓJ JPC I = 1 I = 1

2
I = 0 I = 0 θquad θlin

ud, ud, 1√
2
(dd − uu) us, ds; ds, −us f ′ f [◦] [◦]

1 1S0 0−+ π K η η′(958) −11.4 −24.5

1 3S1 1−− ρ(770) K∗(892) φ(1020) ω(782) 39.1 36.4

1 1P1 1+− b1(1235) K1B
† h1(1380) h1(1170)

1 3P0 0++ a0(1450) K∗
0
(1430) f0(1710) f0(1370)

1 3P1 1++ a1(1260) K1A
† f1(1420) f1(1285)

1 3P2 2++ a2(1320) K∗
2
(1430) f ′

2
(1525) f2(1270) 32.1 30.5

1 1D2 2−+ π2(1670) K2(1770)
† η2(1870) η2(1645)

1 3D1 1−− ρ(1700) K∗(1680) ω(1650)

1 3D2 2−− K2(1820)

1 3D3 3−− ρ3(1690) K∗
3
(1780) φ3(1850) ω3(1670) 31.8 30.8

1 3F4 4++ a4(2040) K∗
4
(2045) f4(2050)

1 3G5 5−− ρ5(2350) K∗
5 (2380)

1 3H6 6++ a6(2450) f6(2510)

2 1S0 0−+ π(1300) K(1460) η(1475) η(1295)

2 3S1 1−− ρ(1450) K∗(1410) φ(1680) ω(1420)

† The 1+± and 2−± isospin 1

2
states mix. In particular, the K1A and K1B are nearly equal (45◦) mixtures of the K1(1270) and K1(1400).

The physical vector mesons listed under 13D1 and 23S1 may be mixtures of 13D1 and 23S1.
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Table 15.3: qq quark-model assignments for the observed heavy mesons with established JPC . Mesons in bold face are included in the
Meson Summary Table.

n 2s+1ℓJ JPC I = 0 I = 0 I = 1

2
I = 0 I = 1

2
I = 0 I = 0

cc bb cu, cd; cu, cd cs; cs bu, bd; bu, bd bs; bs bc; bc

1 1S0 0−+ ηc(1S) ηb(1S) D D±
s B B0

s B±
c

1 3S1 1−− J/ψ(1S) Υ(1S) D∗ D∗±
s B∗ B∗

s

1 1P1 1+− hc(1P ) hb(1P ) D1(2420) Ds1(2536)
± B1(5721) Bs1(5830)

0

1 3P0 0++ χc0(1P ) χb0(1P ) D∗
0
(2400) D∗

s0(2317)
±†

1 3P1 1++ χc1(1P ) χb1(1P ) D1(2430) Ds1(2460)
±†

1 3P2 2++ χc2(1P ) χb2(1P ) D∗
2
(2460) D∗

s2(2573)
± B∗

2
(5747) B∗

s2(5840)
0

1 3D1 1−− ψ(3770) D∗
s1(2860)±‡

1 3D3 3−− D∗
s3(2860)±

2 1S0 0−+ ηc(2S) ηb(2S) D(2550)

2 3S1 1−− ψ(2S) Υ(2S) D∗
s1(2700)

±‡

2 1P1 1+− hb(2P )

2 3P0,1,2 0++, 1++, 2++ χc0,2(2P ) χb0,1,2(2P )

3 3P0,1,2 0++, 1++, 2++ χb(3P )

† The masses of these states are considerably smaller than most theoretical predictions. They have also been considered as four-quark states.
‡ These states are mixtures of the 1 3D1 and 2 3S1 states.

The open flavor states in the 1+− and 1++ rows are mixtures of the 1+± states.
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15. Quark model 5

Z

Figure 15.1: SU(4) weight diagram showing the 16-plets for the pseudoscalar (a)
and vector mesons (b) made of the u, d, s, and c quarks as a function of isospin Iz ,

charm C, and hypercharge Y = B + S −C
3

. The nonets of light mesons occupy the

central planes to which the cc̄ states have been added.

The weight diagrams for the ground-state pseudoscalar (0−+) and vector (1−−) mesons
are depicted in Fig. 15.1. The light quark mesons are members of nonets building the
middle plane in Fig. 15.1(a) and (b).

Isoscalar states with the same JPC will mix, but mixing between the two light quark
isoscalar mesons, and the much heavier charmonium or bottomonium states, are generally
assumed to be negligible. In the following, we shall use the generic names a for the I = 1,
K for the I = 1/2, and f and f ′ for the I = 0 members of the light quark nonets. Thus,
the physical isoscalars are mixtures of the SU(3) wave function ψ8 and ψ1:

f ′ = ψ8 cos θ − ψ1 sin θ , (15.4)

f = ψ8 sin θ + ψ1 cos θ , (15.5)
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6 15. Quark model

where θ is the nonet mixing angle and

ψ8 =
1√
6
(uū + dd̄ − 2ss̄) , (15.6)

ψ1 =
1√
3
(uū + dd̄ + ss̄) . (15.7)

These mixing relations are often rewritten to exhibit the uū + dd̄ and ss̄ components
which decouple for the “ideal” mixing angle θi, such that tan θi = 1/

√
2 (or θi = 35.3◦).

Defining α = θ + 54.7◦, one obtains the physical isoscalar in the flavor basis

f ′ =
1√
2
(uū + dd̄) cos α − ss̄ sin α , (15.8)

and its orthogonal partner f (replace α by α –90◦). Thus for ideal mixing (αi = 90◦),
the f ′ becomes pure ss̄ and the f pure uū + dd̄. The mixing angle θ can be derived by
diagonalizing the mass matrix

(

m8 m81

m18 m1

)

The mass eigenvalues are mf ′ and mf . The mixing angle is given by

tan θ =
m8 − mf ′

m81
.

Calculating m8 and m81 from the wave functions Eq. (15.6) and Eq. (15.7), and expressing
the quark masses as a function of the I = 1/2 and I = 1 meson masses, one obtains

tan θ =
4mK − ma − 3mf ′

2
√

2(ma − mK)
, (15.9)

which also determines the sign of θ. Alternatively, one can express the mixing angle as a
function of all nonet masses. The octet mass is given by

m8 = mf ′ cos2 θ + mf sin2 θ

whence

tan2 θ =
4mK − ma − 3mf ′

−4mK + ma + 3mf
. (15.10)

Eliminating θ from Eq. (15.9) and Eq. (15.10) leads to the sum rule [1]

(mf + mf ′)(4mK − ma) − 3mfmf ′ = 8m2
K − 8mKma + 3m2

a. (15.11)

This relation is verified for the ground-state vector mesons. We identify the φ(1020) with
the f ′ and the ω(783) with the f . Thus

φ(1020) = ψ8 cos θV − ψ1 sin θV , (15.12)
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15. Quark model 7

ω(782) = ψ8 sin θV + ψ1 cos θV , (15.13)

with the vector mixing angle θV = 36.4◦ from Eq. (15.10), very close to ideal mixing.
Thus φ(1020) is nearly pure ss̄. For ideal mixing, Eq. (15.9) and Eq. (15.10) lead to the
relations

mK =
mf + mf ′

2
, ma = mf , (15.14)

which are satisfied for the vector mesons.

The situation for the pseudoscalar and scalar mesons is not so clear cut, either
theoretically or experimentally. For the pseudoscalars, the mixing angle is small. This
can be understood qualitatively via gluon-line counting of the mixing process. The size of
the mixing process between the nonstrange and strange mass bases scales as α2

s, not α3
s,

because of two rather than three gluon exchange as it does for the vector mesons. It may
also be that the lightest isoscalar pseudoscalars mix more strongly with excited states or
with states of substantial non-q̄q content, as will be discussed below.

A variety of analysis methods lead to similar results: First, for these states, Eq. (15.11)
is satisfied only approximately. Then Eq. (15.9) and Eq. (15.10) lead to somewhat
different values for the mixing angle. Identifying the η with the f ′ one gets

η = ψ8 cos θP − ψ1 sin θP , (15.15)

η′ = ψ8 sin θP + ψ1 cos θP . (15.16)

Following chiral perturbation theory, the meson masses in the mass formulae (Eq. (15.9)
and Eq. (15.10)) might be replaced by their squares. Table 15.2 lists the mixing angle
θlin from Eq. (15.10) (using the neutral members of the nonets) and the corresponding
θquad obtained by replacing the meson masses by their squares throughout.

The pseudoscalar mixing angle θP can also be measured by comparing the partial
widths for radiative J/ψ decay into a vector and a pseudoscalar [2], radiative φ(1020)
decay into η and η′ [3], or p̄p annihilation at rest into a pair of vector and pseudoscalar
or into two pseudoscalars [4,5]. One obtains a mixing angle between –10◦ and –20◦.
More recently, a lattice QCD simulation, Ref. 6, has successfully reproduced the masses
of the η and η′, and as a byproduct find a mixing angle θlin = −14.1(2.8)◦. We return to
this point in Sec. 15.6.

The nonet mixing angles can be measured in γγ collisions, e.g., for the 0−+, 0++,
and 2++ nonets. In the quark model, the amplitude for the coupling of neutral mesons
to two photons is proportional to

∑

i Q2
i , where Qi is the charge of the i-th quark. The

2γ partial width of an isoscalar meson with mass m is then given in terms of the mixing
angle α by

Γ2γ = C(5 cosα −
√

2 sin α)2m3 , (15.17)

for f ′ and f (α → α – 90◦). The coupling C may depend on the meson mass. It is often
assumed to be a constant in the nonet. For the isovector a, one then finds Γ2γ = 9 C m3.
Thus the members of an ideally mixed nonet couple to 2γ with partial widths in the ratios
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8 15. Quark model

f : f ′ : a = 25 : 2 : 9. For tensor mesons, one finds from the ratios of the measured 2γ
partial widths for the f2(1270) and f ′

2(1525) mesons a mixing angle αT of (81± 1)◦, or
θT = (27 ± 1)◦, in accord with the linear mass formula. For the pseudoscalars, one finds
from the ratios of partial widths Γ(η′ → 2γ)/Γ(η → 2γ) a mixing angle θP = (–18 ±
2)◦, while the ratio Γ(η′ → 2γ)/Γ(π0 → 2γ) leads to ∼ –24 ◦. SU(3) breaking effects for
pseudoscalars are discussed in Ref. 7.

The partial width for the decay of a scalar or a tensor meson into a pair of pseudoscalar
mesons is model-dependent. Following Ref. 8,

Γ = C × γ2 × |F (q)|2 × q . (15.18)

C is a nonet constant, q the momentum of the decay products, F (q) a form factor, and
γ2 the SU(3) coupling. The model-dependent form factor may be written as

|F (q)|2 = q2ℓ × exp(− q2

8β2
), (15.19)

where ℓ is the relative angular momentum between the decay products. The decay of a
qq̄ meson into a pair of mesons involves the creation of a qq̄ pair from the vacuum, and
SU(3) symmetry assumes that the matrix elements for the creation of ss̄, uū, and dd̄
pairs are equal. The couplings γ2 are given in Table 15.4, and their dependence upon the
mixing angle α is shown in Fig. 15.2 for isoscalar decays. The generalization to unequal
ss̄, uū, and dd̄ couplings is given in Ref. 8. An excellent fit to the tensor meson decay
widths is obtained assuming SU(3) symmetry, with β ≃ 0.5 GeV/c, θV ≃ 26 ◦ and θP ≃
–17 ◦ [8].

15.3. Exotic mesons

The existence of a light nonet composed of four quarks with masses below 1 GeV was
suggested a long time ago [9]. Coupling two triplets of light quarks u, d, and s, one obtains
nine states, of which the six symmetric (uu, dd, ss, ud + du, us + su, ds + sd) form the
six dimensional representation 6, while the three antisymmetric (ud−du, us−su, ds−sd)
form the three dimensional representation 3 of SU(3):

3⊗ 3 = 6⊕ 3̄ . (15.20)

Combining with spin and color and requiring antisymmetry, one finds that the most
deeply bound diquark (and hence the lightest) is the one in the 3 and spin singlet state.
The combination of the diquark with an antidiquark in the 3 representation then gives a
light nonet of four-quark scalar states. Letting the number of strange quarks determine
the mass splitting, one obtains a mass inverted spectrum with a light isosinglet (udūd̄),
a medium heavy isodoublet (e.g., uds̄d̄) and a heavy isotriplet (e.g., dsūs̄) + isosinglet
(e.g., usūs̄). It is then tempting to identify the lightest state with the f0(500), and the
heaviest states with the a0(980), and f0(980). Then the meson with strangeness K∗

0 (800)
would lie in-between.
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15. Quark model 9

Table 15.4: SU(3) couplings γ2 for quarkonium decays as a function of nonet
mixing angle α, up to a common multiplicative factor C (φ ≡ 54.7◦ + θP ).

Isospin Decay channel γ2

0 ππ 3 cos2 α

KK (cos α −
√

2 sin α)2

ηη (cos α cos2 φ −
√

2 sin α sin2 φ)2

ηη′
1

2
sin2 2φ (cosα +

√
2 sin α)2

1 ηπ 2 cos2 φ

η′π 2 sin2 φ

KK 1

1

2
Kπ

3

2

Kη (sinφ − cos φ√
2

)2

Kη′ (cosφ +
sinφ√

2
)2

QCD predicts the existence of extra isoscalar mesons. In the pure gauge theory they
contain only gluons, and are called the glueballs. The ground state glueball is predicted
by lattice gauge theories to be 0++, the first excited state 2++. Errors on the mass
predictions are large. From Ref. 10 one obtains 1750 (50) (80) MeV for the mass of the
lightest 0++ glueball from quenched QCD. As an example for the glueball mass spectrum,
we show in Fig. 15.3 a calculation from Ref. 11. A mass of 1710 MeV is predicted for
the ground state, also with an error of about 100 MeV. Earlier work by other groups
produced masses at 1650 MeV [12] and 1550 MeV [13] (see also [14]). The first excited
state has a mass of about 2.4 GeV, and the lightest glueball with exotic quantum numbers
(2+−) has a mass of about 4 GeV.

These calculations are made in the so-called “quenched approximation” which neglects
qq̄ loops. However, both glue and qq̄ states will couple to singlet scalar mesons. Therefore
glueballs will mix with nearby qq̄ states of the same quantum numbers. For example, the
two isoscalar 0++ mesons around 1500 MeV will mix with the pure ground state glueball
to generate the observed physical states f0(1370), f0(1500), and f0(1710) [8,15]. The
first results from lattice calculations, which include these effects, indicate that the mass
shifts are small. We return to a discussion of this point in Sec. 15.6.

The existence of three singlet scalar mesons around 1.5 GeV suggests additional
degrees of freedom such as glue, since only two mesons are predicted in this mass range.
The f0(1500) [8,15] or, alternatively, the f0(1710) [12], have been proposed as candidates
for the scalar glueball, both states having considerable mixing also with the f0(1370).
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Figure 15.2: SU(3) couplings as a function of mixing angle α for isoscalar decays,
up to a common multiplicative factor C and for θP = −17.3◦.

Other mixing schemes, in particular with the f0(500) and the f0(980), have also been
proposed [16]. Details can be found in the “Note on Non-qq̄ Mesons” in the Meson
Listings and in Ref. 17. See also the “Note on Scalar Mesons below 2 GeV”.

Mesons made of qq̄ pairs bound by excited gluons g, the hybrid states qq̄g, are also
predicted. They should lie in the 1.9 GeV mass region, according to gluon flux tube
models [18]. Lattice QCD also predicts the lightest hybrid, an exotic 1−+, at a mass
of 1.8 to 1.9 GeV [19]. However, the bag model predicts four nonets, among them an
exotic 1−+ around or above 1.4 GeV [20,21]. There are so far two candidates for exotic
states with quantum numbers 1−+, the π1(1400) and π1(1600), which could be hybrids or
four-quark states (see the “Note on Non-qq̄ Mesons” in the Meson Listings and in Ref. 17).

15.4. Baryons: qqq states

Baryons are fermions with baryon number B = 1, i.e., in the most general case, they
are composed of three quarks plus any number of quark - antiquark pairs. So far all
established baryons are 3-quark (qqq) configurations (the LHCb collaboration has very
recently announced observation of two charmed ‘pentaquark’ states of minimal quark
content cc̄uud at invariant masses close to 4.4 GeV [23]). The color part of their state
functions is an SU(3) singlet, a completely antisymmetric state of the three colors. Since
the quarks are fermions, the state function must be antisymmetric under interchange of
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Figure 15.3: Predicted glueball mass spectrum from the lattice in quenched
approximation (from Ref. 11).

any two equal-mass quarks (up and down quarks in the limit of isospin symmetry). Thus
it can be written as

| qqq 〉A = | color 〉A × | space, spin, flavor 〉S , (15.21)

where the subscripts S and A indicate symmetry or antisymmetry under interchange
of any two equal-mass quarks. Note the contrast with the state function for the three
nucleons in 3H or 3He:

|NNN 〉A = | space, spin, isospin 〉A . (15.22)

This difference has major implications for internal structure, magnetic moments, etc. (For
a nice discussion, see Ref. 24.)

The “ordinary” baryons are made up of u, d, and s quarks. The three flavors imply an
approximate flavor SU(3), which requires that baryons made of these quarks belong to
the multiplets on the right side of

3⊗ 3⊗ 3 = 10S ⊕ 8M ⊕ 8M ⊕ 1A (15.23)
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12 15. Quark model

(see Sec. 46, on “SU(n) Multiplets and Young Diagrams”). Here the subscripts indicate
symmetric, mixed-symmetry, or antisymmetric states under interchange of any two
quarks. The 1 is a uds state (Λ1), and the octet contains a similar state (Λ8). If
these have the same spin and parity, they can mix. The mechanism is the same as for
the mesons (see above). In the ground state multiplet, the SU(3) flavor singlet Λ1 is
forbidden by Fermi statistics. Section 45, on “SU(3) Isoscalar Factors and Representation
Matrices,” shows how relative decay rates in, say, 10 → 8⊗ 8 decays may be calculated.

The addition of the c quark to the light quarks extends the flavor symmetry to SU(4).
However, due to the large mass of the c quark, this symmetry is much more strongly
broken than the SU(3) of the three light quarks. Figures 15.4(a) and 15.4(b) show the
SU(4) baryon multiplets that have as their bottom levels an SU(3) octet, such as the
octet that includes the nucleon, or an SU(3) decuplet, such as the decuplet that includes
the ∆(1232). All particles in a given SU(4) multiplet have the same spin and parity. The
charmed baryons are discussed in more detail in the “Note on Charmed Baryons” in the
Particle Listings. The same multiplets as shown in 15.4 can be constructed when the
c quark is replaced by the b quark, or they can be embedded in a larger SU(5) group
that accounts for all baryons that can be constructed from the five quark flavors. The
existence of baryons with t-quarks is very unlikely due to the short lifetime of the t-quark.
The heavy quark baryons have recently gained a lot of interest. Their relatively narrow
widths allow to isolate the states much easier than the light quark baryon resonances
which require intricate partial wave analyses. The only problem on the experimental
side are the small production cross sections, but the recent measurements at the e+e−

colliding B factories, at the pp̄ Tevatron collider, and at LHCb at CERN have boosted
this field. A recent summary is given in Ref. 25. A possible candidate for a doubly
charmed baryon had been reported by the SELEX experiment [26,27] but could so far
not be confirmed by other experiments, and quark model predictions for baryons with
two heavy quarks are given in Ref. 28.

For the “ordinary” baryons (no c or b quark), flavor and spin may be combined in an
approximate flavor-spin SU(6), in which the six basic states are d ↑, d ↓, · · ·, s ↓ (↑, ↓ =
spin up, down). Then the baryons belong to the multiplets on the right side of

6⊗ 6⊗ 6 = 56S ⊕ 70M ⊕ 70M ⊕ 20A . (15.24)

These SU(6) multiplets decompose into flavor SU(3) multiplets as follows:

56 = 410 ⊕ 28 (15.25a)

70 = 210⊕ 48 ⊕ 28⊕ 21 (15.25b)

20 = 28 ⊕ 41 , (15.25c)

where the superscript (2S + 1) gives the net spin S of the quarks for each particle in
the SU(3) multiplet. The JP = 1/2+ octet containing the nucleon and the JP = 3/2+

decuplet containing the ∆(1232) together make up the “ground-state” 56-plet, in which
the orbital angular momenta between the quark pairs are zero (so that the spatial part
of the state function is trivially symmetric). The 70 and 20 require some excitation
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Figure 15.4: SU(4) multiplets of baryons made of u, d, s, and c quarks. (a) The
20-plet with an SU(3) octet. (b) The 20-plet with an SU(3) decuplet.

of the spatial part of the state function in order to make the overall state function
symmetric. States with nonzero orbital angular momenta are classified in SU(6)⊗O(3)
supermultiplets.

It is useful to classify the baryons into bands that have the same number N of quanta
of excitation. Each band consists of a number of supermultiplets, specified by (D, LP

N ),
where D is the dimensionality of the SU(6) representation, L is the total quark orbital
angular momentum, and P is the total parity. Supermultiplets contained in bands up to
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N = 12 are given in Ref. 29. The N = 0 band, which contains the nucleon and ∆(1232),
consists only of the (56,0+

0 ) supermultiplet. The N = 1 band consists only of the (70,1−1 )
multiplet and contains the negative-parity baryons with masses below about 1.9 GeV.
The N = 2 band contains five supermultiplets: (56,0+

2 ), (70,0+
2 ), (56,2+

2 ), (70,2+
2 ), and

(20,1+
2 ).

Table 15.5: N and ∆ states in the N=0,1,2 harmonic oscillator bands. LP denotes
angular momentum and parity, S the three-quark spin and ‘sym’=A,S,M the
symmetry of the spatial wave function. Only dominant components indicated.
Assignments in the N=2 band are partly tentative.

N sym LP S N(I = 1/2) ∆(I = 3/2)

2 A 1+ 1/2 1/2+ 3/2+

2 M 2+ 3/2 1/2+ 3/2+ 5/2+ 7/2+

2 M 2+ 1/2 3/2+ 5/2+ 3/2+ 5/2+

2 M 0+ 3/2 3/2+

2 M 0+ 1/2 1/2+ 1/2+

N(1710) ∆(1750)

2 S 2+ 3/2 1/2+ 3/2+ 5/2+ 7/2+

∆(1910) ∆(1920) ∆(1905) ∆(1950)

2 S 2+ 1/2 3/2+ 5/2+

N(1720) N(1680)

2 S 0+ 3/2 3/2+

∆(1600)

2 S 0+ 1/2 1/2+

N(1440)

1 M 1− 3/2 1/2− 3/2− 5/2−

N(1650) N(1700) N(1675)

1 M 1− 1/2 1/2− 3/2− 1/2− 3/2−

N(1535) N(1520) ∆(1620) ∆(1700)

0 S 0+ 3/2 3/2+

∆(1232)

0 S 0+ 1/2 1/2+

N(938)

The wave functions of the non-strange baryons in the harmonic oscillator basis are
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Table 15.6: Quark-model assignments for some of the known baryons in terms of
a flavor-spin SU(6) basis. Only the dominant representation is listed. Assignments
for several states, especially for the Λ(1810), Λ(2350), Ξ(1820), and Ξ(2030), are

merely educated guesses. † recent suggestions for assignments and re-assignments
from Ref. 33. For assignments of the charmed baryons, see the “Note on Charmed
Baryons” in the Particle Listings.

JP (D, LP
N )S Octet members Singlets

1/2+ (56,0+
0 ) 1/2N(939) Λ(1116) Σ(1193) Ξ(1318)

1/2+ (56,0+
2 ) 1/2N(1440)Λ(1600) Σ(1660) Ξ(1690)†

1/2− (70,1−1 ) 1/2N(1535)Λ(1670) Σ(1620) Ξ(?) Λ(1405)

Σ(1560)†
3/2− (70,1−1 ) 1/2N(1520)Λ(1690) Σ(1670) Ξ(1820) Λ(1520)

1/2− (70,1−1 ) 3/2N(1650)Λ(1800) Σ(1750) Ξ(?)

Σ(1620)†
3/2− (70,1−1 ) 3/2N(1700)Λ(?) Σ(1940)† Ξ(?)

5/2− (70,1−1 ) 3/2N(1675)Λ(1830) Σ(1775) Ξ(1950)†
1/2+ (70,0+

2 ) 1/2N(1710)Λ(1810) Σ(1880) Ξ(?) Λ(1810)†
3/2+ (56,2+

2 ) 1/2N(1720)Λ(1890) Σ(?) Ξ(?)

5/2+ (56,2+
2 ) 1/2N(1680)Λ(1820) Σ(1915) Ξ(2030)

7/2− (70,3−3 ) 1/2N(2190)Λ(?) Σ(?) Ξ(?) Λ(2100)

9/2− (70,3−3 ) 3/2N(2250)Λ(?) Σ(?) Ξ(?)

9/2+ (56,4+
4 ) 1/2N(2220)Λ(2350) Σ(?) Ξ(?)

Decuplet members

3/2+ (56,0+
0 ) 3/2∆(1232) Σ(1385) Ξ(1530) Ω(1672)

3/2+ (56,0+
2 ) 3/2∆(1600) Σ(1690)†Ξ(?) Ω(?)

1/2− (70,1−1 ) 1/2∆(1620) Σ(1750)†Ξ(?) Ω(?)

3/2− (70,1−1 ) 1/2∆(1700) Σ(?) Ξ(?) Ω(?)

5/2+ (56,2+
2 ) 3/2∆(1905) Σ(?) Ξ(?) Ω(?)

7/2+ (56,2+
2 ) 3/2∆(1950) Σ(2030) Ξ(?) Ω(?)

11/2+ (56,4+
4 ) 3/2∆(2420) Σ(?) Ξ(?) Ω(?)

often labeled by |X2S+1LπJP 〉, where S, L, J, P are as above, X = N or ∆, and π = S, M
or A denotes the symmetry of the spatial wave function. The possible model states for the
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bands with N=0,1,2 are given in Table 15.5. The assignment of experimentally observed
states is only complete and well established up to the N=1 band. Some more tentative
assignments for higher multiplets are suggested in Ref. 30.

In Table 15.6, quark-model assignments are given for many of the established baryons
whose SU(6)⊗O(3) compositions are relatively unmixed. One must, however, keep in
mind that apart from the mixing of the Λ singlet and octet states, states with same
JP but different L, S combinations can also mix. In the quark model with one-gluon
exchange motivated interactions, the size of the mixing is determined by the relative
strength of the tensor term with respect to the contact term (see below). The mixing is
more important for the decay patterns of the states than for their positions. An example
are the lowest lying (70, 1−1 ) states with JP =1/2− and 3/2−. The physical states are:

|N(1535)1/2−〉 = cos(ΘS)|N2PM1/2−〉 − sin(ΘS)|N4PM1/2−〉 (15.26)

|N(1520)3/2−〉 = cos(ΘD)|N2PM3/2−〉 − sin(Θ)D|N4PM3/2−〉 (15.27)

and the orthogonal combinations for N(1650)1/2− and N(1700)3/2−. The mixing is
large for the JP =1/2− states (ΘS ≈ -32o), but small for the JP =3/2− states (ΘD ≈
+6o) [31,32].

All baryons of the ground state multiplets are known. Many of their properties, in
particular their masses, are in good agreement even with the most basic versions of the
quark model, including harmonic (or linear) confinement and a spin-spin interaction,
which is responsible for the octet - decuplet mass shifts. A consistent description of
the ground-state electroweak properties, however, requires refined relativistic constituent
quark models.

The situation for the excited states is much less clear. The assignment of some
experimentally observed states with strange quarks to model configurations is only
tentative and in many cases candidates are completely missing. Recently, Melde, Plessas
and Sengl [33] have calculated baryon properties in relativistic constituent quark
models, using one-gluon exchange and Goldstone-boson exchange for the modeling of
the hyperfine interactions (see Sec. 15.5 on Dynamics). Both types of models give
qualitatively comparable results, and underestimate in general experimentally observed
decay widths. Nevertheless, in particular on the basis of the observed decay patterns, the
authors have assigned some additional states with strangeness to the SU(3) multiplets
and suggest re-assignments for a few others. Among the new assignments are states
with weak experimental evidence (two or three star ratings) and partly without firm
spin/parity assignments, so that further experimental efforts are necessary before final
conclusions can be drawn. We have added their suggestions in Table 15.6.

In the non-strange sector there are two main problems which are illustrated in
Fig. 15.5, where the experimentally observed excitation spectrum of the nucleon (N
and ∆ resonances) is compared to the results of a typical quark model calculation [34].
The lowest states from the N=2 band, the N(1440)1/2+, and the ∆(1600)3/2+, appear
lower than the negative parity states from the N=1 band (see Table 15.5) and much
lower than predicted by most models. Also negative parity ∆ states from the N=3
band (∆(1900)1/2−, ∆(1940)3/2−, and ∆(1930)5/2−) are too low in energy. Part of
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Figure 15.5: Excitation spectrum of the nucleon. Compared are the positions
of the excited states identified in experiment, to those predicted by a relativized
quark model calculation. Left hand side: isospin I = 1/2 N -states, right hand
side: isospin I = 3/2 ∆-states. Experimental: (columns labeled ’exp’), three- and
four-star states are indicated by full lines (two-star dashed lines, one-star dotted
lines). At the very left and right of the figure, the spectroscopic notation of these
states is given. Quark model [34]: (columns labeled ’QM’), all states for the
N=1,2 bands, low-lying states for the N=3,4,5 bands. Full lines: at least tentative
assignment to observed states, dashed lines: so far no observed counterparts. Many
of the assignments between predicted and observed states are highly tentative.

the problem could be experimental. Among the negative parity ∆ states, only the
∆(1930)5/2− has three stars and the uncertainty in the position of the ∆(1600)3/2+ is
large (1550 - 1700 MeV).

Furthermore, many more states are predicted than observed. This has been known for
a long time as the ‘missing resonance’ problem [31]. Up to an excitation energy of 2.4
GeV, about 45 N states are predicted, but only 14 are established (four- or three-star;
see Note on N and ∆ Resonances for the rating of the status of resonances) and 10
are tentative (two- or one-star). Even for the N=2 band, up to now only half of the
predicted states have been observed. The most recent partial wave analysis of elastic
pion scattering and charge exchange data by Arndt and collaborators [35] has made the
situation even worse. They found no evidence for almost half of the states listed in this
review (and included in Fig. 15.5). Such analyses are of course biased against resonances
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which couple only weakly to the Nπ channel. Quark model predictions for the couplings
to other hadronic channels and to photons are given in Ref. 34. A large experimental
effort is ongoing at several electron accelerators to study the baryon resonance spectrum
with real and virtual photon-induced meson production reactions. This includes the
search for as-yet-unobserved states, as well as detailed studies of the properties of the
low lying states (decay patterns, electromagnetic couplings, magnetic moments, etc.) (see
Ref. 36 for recent reviews). This experimental effort has currently entered its final phase
with the measurement of single and double polarization observables for many different
meson production channels, so that a much better understanding of the experimental
spectrum can be expected for the near future.

In quark models, the number of excited states is determined by the effective degrees
of freedom, while their ordering and decay properties are related to the residual quark -
quark interaction. An overview of quark models for baryons is given in Ref. 32, recent
discussions of baryon spectroscopy are given in Refs. 30 and 25. The effective degrees of
freedom in the standard nonrelativistic quark model are three equivalent valence quarks
with one-gluon exchange-motivated, flavor-independent color-magnetic interactions.
The QCD aspect of gluon-gluon interactions is emphasized by the hypercentral quark
model [37], [38], which includes in a natural way three-body forces between the quarks.
A different class of models uses interactions which give rise to a quark - diquark clustering
of the baryons: for a review see Ref. 39. If there is a tightly bound diquark, only two
degrees of freedom are available at low energies, and thus fewer states are predicted.
Furthermore, selection rules in the decay pattern may arise from the quantum numbers
of the diquark. More states are predicted by collective models of the baryon like the
algebraic approach in Ref. 40. In this approach, the quantum numbers of the valence
quarks are distributed over a Y-shaped string-like configuration, and additional states
arise e.g., from vibrations of the strings. More states are also predicted in the framework
of flux-tube models, see Ref. 41, which are motivated by lattice QCD. In addition to
the quark degrees of freedom, flux-tubes responsible for the confinement of the quarks
are considered as degrees of freedom. These models include hybrid baryons containing
explicit excitations of the gluon fields. However, since all half integral JP quantum
numbers are possible for ordinary baryons, such ‘exotics’ will be very hard to identify, and
probably always mix with ordinary states. So far, the experimentally observed number of
states is still far lower even than predicted by the quark–diquark models.

Recently, the influence of chiral symmetry on the excitation spectrum of the nucleon
has been hotly debated from a somewhat new perspective. Chiral symmetry, the
fundamental symmetry of QCD, is strongly broken for the low lying states, resulting in
large mass differences of parity partners like the JP =1/2+ N(938)1/2+ ground state and
the JP =1/2− N(1535)1/2− excitation. However, at higher excitation energies there is
some evidence for parity doublets and even some very tentative suggestions for full chiral
multiplets of N∗ and ∆ resonances. An effective restoration of chiral symmetry at high
excitation energies due to a decoupling from the quark condensate of the vacuum has
been discussed (see Ref. 42 for recent reviews) as a possible cause. In this case, the mass
generating mechanisms for low and high lying states would be essentially different. As a
further consequence, the parity doublets would decouple from pions, so that experimental
bias would be worse. However, parity doublets might also arise from the spin-orbital
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dynamics of the 3-quark system. Presently, the status of data does not allow final
conclusions.

The most recent developments on the theory side are the first unquenched lattice
calculations for the excitation spectrum discussed in Sec. 15.6. The results are basically
consistent with the level counting of SU(6)⊗O(3) in the standard non-relativistic
quark model and show no indication for quark-diquark structures or parity doubling.
Consequently, there is as yet no indication from lattice that the mis-match between the
excitation spectrum predicted by the standard quark model and experimental observations
is due to inappropriate degrees of freedom in the quark model.

15.5. Dynamics

Quantum chromodynamics (QCD) is well-established as the theory for the strong
interactions. As such, one of the goals of QCD is to predict the spectrum of strongly-
interacting particles. To date, the only first-principles calculations of spectroscopy from
QCD use lattice methods. These are the subject of Sec. 15.6. These calculations are
difficult and unwieldy, and many interesting questions do not have a good lattice-
based method of solution. Therefore, it is natural to build models, whose ingredients
are abstracted from QCD, or from the low-energy limit of QCD (such as chiral
Lagrangians) or from the data itself. The words “quark model” are a shorthand for such
phenomenological models. Many specific quark models exist, but most contain a similar
basic set of dynamical ingredients. These include:

i) A confining interaction, which is generally spin-independent (e.g., harmonic oscillator
or linear confinement);

ii) Different types of spin-dependent interactions:

a) commonly used is a color-magnetic flavor-independent interaction modeled after
the effects of gluon exchange in QCD (see e.g., Ref. 43). For example, in the S-wave
states, there is a spin-spin hyperfine interaction of the form

HHF = −αSM
∑

i>j

(−→σ λa)i(
−→σ λa)j , (15.28)

where M is a constant with units of energy, λa (a = 1, · · · , 8, ) is the set of
SU(3) unitary spin matrices, defined in Sec. 45, on “SU(3) Isoscalar Factors and
Representation Matrices,” and the sum runs over constituent quarks or antiquarks.
Spin-orbit interactions, although allowed, seem to be small in general, but a tensor
term is responsible for the mixing of states with the same JP but different L, S
combinations.

b) other approaches include flavor-dependent short-range quark forces from instanton
effects (see e.g., Ref. 44). This interaction acts only on scalar, isoscalar pairs of quarks
in a relative S-wave state:

〈q2; S, L, T |W |q2; S, L, T 〉 = −4gδS,0δL,0δI,0W (15.29)

where W is the radial matrix element of the contact interaction.
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c) a rather different and controversially discussed approach is based on flavor-
dependent spin-spin forces arising from one-boson exchange. The interaction term is
of the form:

HHF ∝
∑

i<j

V (−→r ij)λ
F
i · λF

j
−→σ i · −→σ j (15.30)

where the λF
i are in flavor space (see e.g., Ref. 45).

iii) A strange quark mass somewhat larger than the up and down quark masses, in order
to split the SU(3) multiplets;

iv) In the case of spin-spin interactions (iia,c), a flavor-symmetric interaction for mixing
qq configurations of different flavors (e.g., uu ↔ dd ↔ ss), in isoscalar channels, so
as to reproduce e.g., the η - η′ and ω - φ mesons.

These ingredients provide the basic mechanisms that determine the hadron spectrum in
the standard quark model.

15.6. Lattice Calculations of Hadronic Spectroscopy

Lattice calculations are a major source of information about QCD masses and matrix
elements. The necessary theoretical background is given in Sec. 18 of this Review. Here
we confine ourselves to some general comments and illustrations of lattice calculations for
spectroscopy.

In general, the cleanest lattice results come from computations of processes in which
there is only one particle in the simulation volume. These quantities include masses
of hadrons, simple decay constants, like pseudoscalar meson decay constants, and
semileptonic form factors (such as the ones appropriate to B → Dlν, Klν, πlν). The
cleanest predictions for masses are for states which have narrow decay widths and are
far below any thresholds to open channels, since the effects of final state interactions are
not yet under complete control on the lattice. As a simple corollary, the lightest state in
a channel is easier to study than the heavier ones. “Difficult” states for the quark model
(such as exotics) are also difficult for the lattice because of the lack of simple operators
which couple well to them.

Good-quality modern lattice calculations will present multi-part error budgets with
their predictions. A small part of the uncertainty is statistical, from sample size.
Typically, the quoted statistical uncertainty includes uncertainty from a fit: it is rare that
a simulation computes one global quantity which is the desired observable. Simulations
which include virtual quark-antiquark pairs (also known as “dynamical quarks” or “sea
quarks”) are often done at up and down quark mass values heavier than the experimental
ones, and it is then necessary to extrapolate in these quark masses. Simulations can
work at the physical values of the heavier quarks’ masses. They are always done at
nonzero lattice spacing, and so it is necessary to extrapolate to zero lattice spacing. Some
theoretical input is needed to do this. Much of the uncertainty in these extrapolations
is systematic, from the choice of fitting function. Other systematics include the effect of
finite simulation volume, the number of flavors of dynamical quarks actually simulated,
and technical issues with how these dynamical quarks are included. The particular choice
of a fiducial mass (to normalize other predictions) is not standardized; there are many

October 1, 2016 19:59



15. Quark model 21

possible choices, each with its own set of strengths and weaknesses, and determining it
usually requires a second lattice simulation from that used to calculate the quantity under
consideration.

A systematic error of major historical interest is the “quenched approximation,” in
which dynamical quarks are simply left out of the simulation. This was done because
the addition of these virtual pairs presented an expensive computational problem. No
generally-accepted methodology has ever allowed one to correct for quenching effects,
short of redoing all calculations with dynamical quarks. Recent advances in algorithms
and computer hardware have rendered it obsolete.

With these brief remarks, we turn to examples. The field of lattice QCD simulations is
vast, and so it is not possible to give a comprehensive review of them in a small space. The
history of lattice QCD simulations is a story of thirty years of incremental improvements
in physical understanding, algorithm development, and ever faster computers, which have
combined to bring the field to a present state where it is possible to carry out very high
quality calculations. We present a few representative illustrations, to show the current
state of the art.

By far, the major part of all lattice spectroscopy is concerned with that of the light
hadrons, and so we illustrate results in Fig. 15.6, a comprehensive summary provided by
A. Kronfeld [46].

Flavor singlet mesons are at the frontier of lattice QCD calculations, because one must
include the effects of “annihilation graphs,” for the valence q and q̄. Recently, several
groups, Refs. 6, 53–56, have reported calculations of the η and η′ mesons. The numbers
of Ref. 6 are typical, finding masses of 573(6) and 947(142) MeV for the η and η′. The
singlet-octet mixing angle (in the conventions of Table 15.2) is θlin = −14.1(2.8)◦.

The spectroscopy of mesons containing heavy quarks has become a truly high-precision
endeavor. These simulations use Non-Relativistic QCD (NRQCD) or Heavy Quark
Effective Theory (HQET), systematic expansions of the QCD Lagrangian in powers
of the heavy quark velocity, or the heavy quark mass. Terms in the Lagrangian have
obvious quark model analogs, but are derived directly from QCD. For example, the heavy
quark potential is a derived quantity, extracted from simulations. Fig. 15.7 shows the
mass spectrum for mesons containing at least one heavy (b or c) quark from Ref. 59.
It also contains results from Refs. 61 and 62. The calculations uses a discretization of
nonrelativistic QCD for bottom quarks with charm and lighter quarks being handled with
an improved relativistic action. Four flavors (u, d, s, c) of dynamical quarks are included.

Fig. 15.8 shows a compilation of recent lattice results for doubly and triply charmed
baryons, from Ref. 63.

There are a number of reported states near the charmonium-D−D̄ threshold, including
the X(3872), D∗

s0(2317), Z±
c (3900) and X(4140), whose quark composition is obscure (see

the “Note on Non-qq̄ mesons in the Meson Listings.” The current status of lattice studies
of these states is reviewed in Ref. 69.

Recall that lattice calculations take operators which are interpolating fields with
quantum numbers appropriate to the desired states, compute correlation functions of
these operators, and fit the correlation functions to functional forms parametrized by
a set of masses and matrix elements. As we move away from hadrons which can be
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Figure 15.6: Hadron spectrum from lattice QCD. Comprehensive results for
mesons and baryons are from MILC [47,48], PACS-CS [49], BMW [50],
QCDSF [51], and ETM [68]. Results for η and η′ are from RBC & UKQCD [6],
Hadron Spectrum [54]( also the only ω mass), UKQCD [53], and Michael, Ottnad,
and Urbach [55]. Results for heavy-light hadrons from Fermilab-MILC [57],
HPQCD [58,59], and Mohler and Woloshyn [60]. Circles, squares, diamonds,
and triangles stand for staggered, Wilson, twisted-mass Wilson, and chiral sea
quarks, respectively. Asterisks represent anisotropic lattices. Open symbols denote
the masses used to fix parameters. Filled symbols (and asterisks) denote results.
Red, orange, yellow, green, and blue stand for increasing numbers of ensembles (i.e.,
lattice spacing and sea quark mass). Black symbols stand for results with 2+1+1
flavors of sea quarks. Horizontal bars (gray boxes) denote experimentally measured
masses (widths). b-flavored meson masses are offset by −4000 MeV.

created by the simplest quark model operators (appropriate to the lightest meson and
baryon multiplets) we encounter a host of new problems: either no good interpolating
fields, or too many possible interpolating fields, and many states with the same quantum
numbers. Techniques for dealing with these interrelated problems vary from collaboration
to collaboration, but all share common features: typically, correlation functions from
many different interpolating fields are used, and the signal is extracted in what amounts
to a variational calculation using the chosen operator basis. In addition to mass spectra,
wave function information can be garnered from the form of the best variational wave
function. Of course, the same problems which are present in the spectroscopy of the
lightest hadrons (the need to extrapolate to infinite volume, physical values of the light
quark masses, and zero lattice spacing) are also present. We briefly touch on three
different kinds of hadrons: excited states of mesons (including hybrids), excited states of
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Figure 15.7: Spectroscopy for mesonic systems containing one or more heavy
quarks (adapted from Ref. 59). Particles whose masses are used to fix lattice
parameters are shown with crosses; the authors distinguish between “predictions”
and “postdictions” of their calculation. Lines represent experiment.

baryons, and glueballs. The quality of the data is not as good as for the ground states,
and so the results continue to evolve.

Modern calculations use a large bases of trial states, which allow them to probe many
quantum number channels simultaneously. This is vital for studying “difficult sectors” of
QCD, such as the isoscalar mesons. A recent example of meson spectroscopy where this
is done, by Ref. 56, is shown in Fig. 15.9. The quark masses are still heavier than their
physical values, so the pion is at 391 MeV. The authors can assign a relative composition
of nonstrange and strange quark content to their states, observing, for example, a
nonstrange ω and a strange φ. Some states also have a substantial component of gluonic
excitation. Note especially the three exotic channels JPC = 1−+, 0+−, and 2+−, with
states around 2 GeV. These calculations will continue to improve as the quark masses are
carried lower.

The interesting physics questions of excited baryon spectroscopy to be addressed are
precisely those enumerated in the last section. An example of a recent calculation, due
to Ref. 70 is shown in Fig. 15.10. Notice that the pion is not yet at its physical value.
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Figure 15.8: Comparison of lattice QCD results for the doubly and triply charmed
baryon masses. Labels are Liu, et al., [64]; Briceno, et al., [65]; Namekawa, et

al., [66]; Padmanath, et al., [67]; Alexandrou, et al., [68]; and Brown, et al.,
citequarkmod:Brown:2014ena. Only calculations with dynamical light quarks are
included; for the doubly charmed baryons, only calculations were performed at
or extrapolated to the physical pion mass are shown. Results without estimates
of systematic uncertainties are labeled “stat. only”. The lattice spacing values
used in the calculations are also given; a = 0 indicates that the results have been
extrapolated to the continuum limit. In the plot of the doubly charmed baryons,
the unconfirmed experimental result for the Ξ+

cc mass from SELEX [26,27] is shown
with a dashed line.

The lightest positive parity state is the nucleon, and the Roper resonance has not yet
appeared as a light state.

In Fig. 15.3 we showed a figure from Ref. 11 presenting a lattice prediction for
the glueball mass spectrum in quenched approximation. A true QCD prediction of the
glueball spectrum requires dynamical light quarks and (because glueball operators are
intrinsically noisy) high statistics. Only recently have the first useful such calculations
appeared. Fig. 15.11 shows results from Ref. 71, done with dynamical u, d and s quarks
at two lattice spacings, 0.123 and 0.092 fm, along with comparisons to the quenched
lattice calculation of Ref. 10 and to experimental isosinglet mesons. The dynamical
simulation is, of course, not the last word on this subject, but it shows that the effects of
quenching seem to be small.

Several other features of hadronic spectroscopy are also being studied on the lattice.

Electromagnetic mass splittings (such as the neutron - proton mass difference) are
interesting but difficult. These calculations are important for determining the values of
the quark masses (for a discussion see the review in the PDG). Knowing that the neutron
is heavier than the proton tells us that these splittings have a complicated origin. One
part of the shift is because the up and down quarks have slightly different masses. The
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Figure 15.9: Isoscalar (green and black) and isovector (blue) spectrum from
Ref. 56. States are labeled JPC . The quark mass is heavier than its physical value;
mπ = 391 MeV. The vertical height of each box indicates the statistical uncertainty
in the mass. Black and green indicate relative nonstrange and strange composition.
Orange outlines show states with a large chromomagnetic component to their wave
function, which the authors of Ref. 56 argue are hybrid states. Note the exotic
states in the three rightmost columns.

second is that the quarks have (different) charges. In pre-lattice days, phenomenologists
would combine Coulomb forces and spin-dependent electromagnetic hyperfine interactions
to model their charge effects. These days, in order to compute hadronic mass differences
on the lattice, electromagnetic interactions must be included in the simulations. This
creates a host of technical issues. An important one is that electromagnetic interactions
are long range, but lattice simulations are done in finite volumes. A recent calculation,
Ref. 72, has presented the first results for electromagnetic mass splittings in the baryon
octet. The situation is summarized in the review Ref. 73.

Most hadrons are resonances, and their widths are the last target of lattice simulations
we will mention. The actual calculation is of the combined mass of two (or more)
hadrons in a box of finite size. The combined mass is shifted from being the sum of the
individual masses because the finite box forces the hadrons to interact with each other.
The volume-dependent mass shift yields the phase shift for the continuum scattering
amplitude, which in turn can be used to extract the resonance mass and width, with
some degree of modeling. So far only two-body resonances, the rho meson and a few
others, have been well studied. This is an active research topic. A recent review, Ref. 74,
summarizes the situation, and an example of a calculation of the rho meson’s decay width
is Ref. 75.
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Figure 15.10: Spin-identified spectrum of nucleons and deltas, from lattices
where mπ = 396 MeV, in units of the calculated Ω mass, from Ref. 70. The colors
just correspond to the different J assignments: grey for J = 1/2, red for J = 3/2,
green for 5/2, blue for J = 7/2.
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Figure 15.11: Lattice QCD predictions for glueball masses. The open and closed
circles are the larger and smaller lattice spacing data of the full QCD calculation
of glueball masses of Ref. 71. Squares are the quenched data for glueball masses
of Ref. 10. The bursts labeled by particle names are experimental states with the
appropriate quantum numbers.
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